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Abstract An improved parallel multiple-precision Taylor

(PMT) scheme is developed to obtain clean numerical

simulation (CNS) solutions of chaotic ordinary differential

equations (ODEs). The new version program is about 500

times faster than the reported solvers developed in the

MATHEMATICA, and also 2–3 times faster than the older

version (PMT-1.0) of the scheme. This solver has the

ability to yield longer solutions of Lorenz equations [up to

5000 TU (time unit)]. The PMT-1.1 scheme is applied to a

selection of chaotic systems including the Chen, Rossler,

coupled Lorenz and Lü systems. The Tc-M and Tc-K dia-

grams for these chaotic systems are presented and used to

analyze the computation parameters for long-term solu-

tions. The reliable computation times of these chaotic

equations are obtained for single- and double-precision

computation.

Keywords Taylor scheme � Parallel multiple-

precision computation � Chaotic dynamic systems

1 Introduction

Obtaining the true trajectories of chaotic dynamical sys-

tems by numerical approaches is not an easy task.

Researchers [1–3] have reported that numerical methods

can provide approximate trajectories close to reality by

applying Riemannian manifolds theory [4]. However, a

remaining problem is how well and how long the

numerical trajectory approximates the real one [5]. Many

studies have documented the sensitivities of computation

parameters for numerical solutions of chaotic equations

[6–11], and indicate that, in spite of there being no initial

errors, the computation is still limited by the maximal

effective computation time (Tc) due to round-off error. Li

et al. [7] carried out systematic investigations on these

phenomena for nonlinear ordinary differential equations

(ODEs), by employing numerical experiments and ana-

lytical way, and put forward the computational uncer-

tainty principle (CUP). The sensitivity of computed

results for chaotic systems is important. For example,

previous results [6, 9, 10] have indicated that the maximal

effective computation time is approximately 35 LTU

(Lorenz time unit) for Lorenz equations under double

precision. Nevertheless, studies are still needed to carry

out theoretical analyses of data for computation times of

longer than 35 LTU. It is important to design a difference

solver to provide the correct solution for times beyond 35

LTU, which is the situation for many types of chaotic

system [12].

The existence of Tc indicates that if we need the solution

of t = 1000, single- and double-precision computers are

insufficient. In order to overcome the shortcomings of

computation precision, a suite of multiple-precision (MP)

software [13, 14] has been developed. This library can

provide user-defined floating-point precision in the
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computation; the similar reliable mathematical libraries are

supported by some software such as MAPLE, MATH-

EMATICA, and MATLAB. Using MP, it is possible to

choose a sufficiently high precision level with a certain step

size h to maintain round-off errors that are negligible

compared with the truncation error. In such cases, the total

computation error is derived mainly from truncation errors.

Wang et al. [15] and Liao [10] have shown these MP

libraries to solve Lorenz equations, demonstrating that high

precision is valuable in terms of obtaining correct numer-

ical solutions.

The effective way to control truncation error is by

applying a higher-order method (e.g., the Taylor method)

to solve ordinary differential equations (ODEs). A benefit

of the Taylor method is that it can easily develop a higher

order by applying Moore’s method [16, 17] to repeatedly

calculate the Taylor coefficients. Barrio [18] studied

general issues when applying the Taylor method to ODEs,

and analyzed the convergence properties of the method.

Liao [10] proposed the ‘‘clean numerical simulation’’

(CNS) method, in which a 400-order Taylor method with

800 significant digits in MATHEMATICA was used to

obtain reliable results up to 1100 LTU. However,

MATHEMATICA needed around 1 month to finish the

computation. Recently, Liao [19] presented a thorough

study of the transfer of physical uncertainties in chaotic

systems by CNS, and also demonstrated [10, 19, 20] a

way to obtain the relation of Tc and the order (M) of the

Taylor method. Meanwhile, Barrio et al. [21] used the

Taylor method to study Lorenz equations, Kepler systems

and Henon–Heiles systems [22], and their results indi-

cated, for a certain predefined time t, the method can

obtain highly precise numerical solutions. Kehlet and

Logg [23] also gained a reliable chaotic solution of

Lorenz equation on the time interval [0, 1000] by

applying the 200-order finite element method with

400-digits precision. Therefore, reliable, convergent cha-

otic results of Lorenz equation can be obtained by two

different types of numerical approaches.

Operationally, obtaining long-term numerical solutions

for chaotic dynamic systems not only depends on the

precision and step size of the difference method, but is

also depend on the time cost of the solution process.

Wang et al. [24] compared the time cost of a 4-order

Runge–Kutta (RK4) method and Taylor method, and their

analysis clearly indicated higher-order methods can

decrease computation time exponentially, and are thus

more effective. Nevertheless, this higher-order Taylor

method is still time-consuming, and while it works with

very high precision, it is a feature that makes the appli-

cation of this method to chaotic systems less attractive.

Wang et al. [24] proposed the parallel multiple-precision

(PMT) scheme to reduce the computation time and

managed to achieve an acceptable improvement. More-

over, the final computation result should be reliably val-

idated. In this study, the validation scheme used in Ref.

[24] is applied.

In this study, we propose an improved version of the

PMT scheme and analyze its efficiency, and then apply the

method to some classical chaotic systems. In applying the

PMT method, each system’s maximal effective computa-

tion time (MECT) is investigated for double and single

precision. The reference reliable long-term solutions of the

systems are listed in the electric supplementary material.

2 The improved parallel multiple-precision Taylor

scheme and its performance

Here, we demonstrate the improved PMT scheme by

solving Lorenz’s [25] equation

dx

dt
¼ �rxþ ry;

dy

dt
¼ Rx� y� xz;

dz

dt
¼ xy� bz;

8
>>>>><

>>>>>:

ð1Þ

where R, r, b (R = 28.0, r = 10.0, b = 8/3) are constants,

and t is a nondimensional time. The truncated Taylor

scheme at p-order (p:M) with step size h is

xnþ1 ¼ xn þ
Pp

k¼1

akhk;

ynþ1 ¼ yn þ
Pp

k¼1

bkhk;

znþ1 ¼ zn þ
Pp

k¼1

ckhk;

8
>>>>>><

>>>>>>:

ð2Þ

where ak ¼ 1
k!

dkx tnð Þ
dtk

; bk ¼ 1
k!

dky tnð Þ
dtk

and ck ¼ 1
k!

dkz tnð Þ
dtk

are k-th

Taylor coefficients. According to Moore [16, 17], Barrio

et al. [18] and Liao [10], the coefficients can be calculated

by a recurrence procedure. The initial coefficients are

a0 ¼ xn;

b0 ¼ yn;

c0 ¼ zn;

8
><

>:

then, by applying the relation from Eq. (1), the first steps of

ak, bk and ck are

a1 ¼ �ra0 þ rb0;

b1 ¼ Ra0 � b0 � a0c0;

c1 ¼ a0b0 � bc0;

8
><

>:

and the (k?1)-th coefficients are
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akþ1 ¼
1

k þ 1
�rak þ rbkð Þ;

bkþ1 ¼
1

k þ 1
Rak � bk �

Xk

i¼0

ak�ici

 !

;

ckþ1 ¼
1

k þ 1

Xk

i¼0

ak�ibi � bck

 !

:

8
>>>>>>>>><

>>>>>>>>>:

ð3Þ

The relation in Eq. (3) indicates that each ak?1, bk?1 and

ck?1 is computed from the previous ak, bk and ck. Thus, the

computation procedure is more like an explicit scheme, and

will save much computation time.

The parallel scheme of Wang et al. [24] is regarded as

version 1.0, and in this paper we propose a new coeffi-

cient computation method and parallel scheme as version

1.1. The time cost for this Taylor scheme is depend on

the computation time of ak, bk and ck; when computing

the solution from the n-th step to the (n?1)-th step, the

coefficient ak needs 3p float-point operations (here,

operations including multiplication and division), while bk

needs 2pþ p pþ1ð Þ
2

operations and ck needs 2pþ p pþ1ð Þ
2

operations, the total of computation times are

7p ? p(p ? 1). The computation time cost thus following

Tw � p2, and therefore parallel scheme is useful for

improving the performance.

From Eq. (3), we have a time cost of p2, but the com-

putation of bk?1, which sums items in
P

i=0
k ak-ici, can be

separate it to N CPUs for parallel computation. Each CPU

will carry out
p pþ1ð Þ

2N
operations when summing the items in

P
i=0
k ak-ici, and now the total computation time become

Tw � p2/N. Since the communication speed limited by

hardware, the parallel efficiency is generally under 100 %.

Table 1 summarizes the performance results for PMT-1.1.

Using the improved PMT scheme, it has the ability to

compute the reliable solution for t = 1200 within 0.8 h,

and this speed is 500 times faster than that reported by L09,

and is also 2–3 times faster than version 1.0 of the PMT

scheme. Moreover, this new parallel scheme uses less

computer memory, and thus we can carry out more com-

plex computations than with the old version. The reliable

solutions up to t = 5000 are listed in Table S1 (online).

3 Application of the PMT method to solve some

classical chaotic systems

3.1 Chen system

Chen et al. [26] found a chaotic system defined by

dx

dt
¼ �axþ ay;

dy

dt
¼ c� að Þxþ cy� xz;

dz

dt
¼ xy� bz;

8
>>>>>>><

>>>>>>>:

ð4Þ

where a = 35, b = 3, c = 28, and the initial values are

(x0, y0, z0) = (-3, 2, 20).

Applying the PMT scheme to solve this equation, the

Taylor coefficient recurrence formulas are

a0 ¼ xn;

b0 ¼ yn;

c0 ¼ zn;

8
>>><

>>>:

akþ1 ¼
1

kþ 1
�aak þ abkð Þ;

bkþ1 ¼
1

kþ 1
c� að Þak þ cbk �

Xk

i¼0

ak�ici

 !

;

ckþ1 ¼
1

kþ 1

Xk

i¼0

ak�ibi� bck

 !

:

8
>>>>>>>>>><

>>>>>>>>>>:

We can obtain the relation of maximal computation time

versus order (Tc�M diagram), while keeping the precision

K ascertained value (e.g., K = 666 bits, M = 20–100,

interval 10). In a similar procedure, we can obtain the

relation of maximal computation time versus precisions

(Tc�K diagram) with M = 32, K = 50–200 and

interval 10.

Figure 1a indicates that if we want to obtain a reliable

solution of the Chen equation to 1000 TU, a 1000-order

Taylor method is necessary. At the same time, Fig. 1b tells

us the computation must have precision of at least 3000

bits. By analyzing the diagrams of Tc �M and Tc � K we

can obtain the necessary computation parameter for chaotic

dynamic systems, and this procedure makes the reliable

computation of chaotic dynamic systems operable. Table

S2 (online) lists the reliable reference solutions of the Chen

equation.

Table 2 lists the wall-clock times of the PMT method

to solve the Chen equation with t = 1000 TU using

different parameters. The three cases show that the

parallel method provides valuable speed-up until the

CPU number reaches 50. Moreover, when the compu-

tation workload increases (C[B[A), the speed-up

increases from 12.1 to 30.0. This indicates the more

computation workload there is, the more effective the

parallel scheme.

Table 1 Performance of PMT-1.1 for Lorenz equations (t = 1200,

K = 2666, p = 400)

CPU V1.1 time (h) V1.0 time (h) L09 time(h)

1 9.98 32.91 461

5 2.23 7.52 –

10 1.33 4.13 –

20 1.13 2.46 –

50 0.83 1.48 –

Chin. Sci. Bull. (2014) 59(33):4465–4472 4467
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3.2 Rossler system

Rossler [27] chaotic systems are described by

dx

dt
¼ �y� z;

dy

dt
¼ xþ ay;

dz

dt
¼ bþ z x� cð Þ;

8
>>>>><

>>>>>:

ð5Þ

where a = 0.2, b = 0.2, c = 5.7, and the initial values are

(x0, y0, z0) = (0, -6.78, 0.02).

The Taylor coefficient recurrence formulas for Eq. (5) are

a0 ¼ xn;

b0 ¼ yn;

c0 ¼ zn;

8
><

>:

akþ1 ¼
1

k þ 1
�bk � ckð Þ;

bkþ1 ¼
1

k þ 1
ak þ abkð Þ;

ckþ1 ¼
1

k þ 1

Xk

i¼0

ak�ici � cck

 !

:

8
>>>>>>><

>>>>>>>:

Figures 2a and b indicate that if we want to obtain a

reliable solution to the Rossler equation to 1000 TU, a

17-order Taylor method and 120-bits precision are

necessary. Table S3 (online) lists the reliable reference

solutions of the Rossler equation.

3.3 Coupled Lorenz system

Boffetta et al. [28] proposed a coupled Lorenz system when

studying the predictability of different timescale systems.

The equations are

dx

dt
¼ �axþ ay;

dy

dt
¼ rsx� y� xz� esXY ;

dz

dt
¼ xy� bz;

dX

dt
¼ c �aX þ aYð Þ;

dY

dt
¼ c rfX � Y � XZð Þ þ efXy;

dZ

dt
¼ c XY � bZð Þ;

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

ð6Þ

where a ¼ 10; b ¼ 8
3
; rs ¼ 28; rf ¼ 45; c ¼ 10; the cou-

pled coefficients are es ¼ 10�2; ef ¼ 10; and the initial

values are (x0, y0, z0) = (5, 5, 10) and (X0, Y0,

Z0) = (5, 5, 10). The first three and last three equations of Eq.

(6) are called slow and fast dynamic systems, respectively.

Boffetta et al. [28] indicated that if the coupled coefficients are

all 0, the slow and fast dynamic systems’ maximal Lyapunov

exponents are ks
1 ¼ 0:905 and kf

1 ¼ 12:17 respectively, and

when coupled together it is k1 = 11.5.

(a) (b)

Fig. 1 (a) The Tc �M diagram of the Chen equation, with K = 666; the line is Tc ¼ 1:06M. (b) The Tc � K diagram of the Chen equation, with

M = 32; the line is Tc ¼ 0:33K � 2:8. The unit of precision K is binary bits

Table 2 Performance of PMT-1.1 for Chen equations

CPU A time (h) B time (h) C time (h)

1 9.05 88.81 152.85

5 2.19 18.65 32.00

10 1.21 9.81 16.65

20 0.87 5.62 9.25

50 0.75 3.30 5.08

Speedup 12.10 26.90 30.00

The parameters for case A are t = 1000, K = 2666, M = 400; for

case B are t = 1000, K = 3500, M = 1000; and for case C are

t = 1000, K = 4000, M = 1200

4468 Chin. Sci. Bull. (2014) 59(33):4465–4472
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The Taylor coefficients can be computed start with a0 =

xn, b0 = yn, c0 = zn, af
0 ¼ Xn; bf

0 ¼ Yn; cf
0 ¼ Zn; and the

recurrence formulas are

akþ1 ¼
1

k þ 1
�aak þ abkð Þ;

bkþ1 ¼
1

k þ 1
rsak � bk �

Xk

i¼0

ak�ici

 !

� 1

k þ 1
es

Xk

i¼0

af
k�ib

f
i ;

ckþ1 ¼
1

k þ 1

Xk

i¼0

ak�ibi � bck

 !

;

af
kþ1 ¼

c

k þ 1
�aaf

k þ abf
k

� �
;

bf
kþ1 ¼

c

k þ 1
rfa

f
k � bf

k �
Xk

i¼0

af
k�ic

f
i

 !

þ 1

k þ 1
ef

Xk

i¼0

af
k�ibi;

cf
kþ1 ¼

c

k þ 1

Xk

i¼0

af
k�ib

f
i � bcf

k

 !

;

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Figures 4a and b and Fig. 3a and b indicate that if we

want obtain a reliable solution of the coupled Lorenz

system to 1000 TU, a 5000-order Taylor method and

17000-bits precision are necessary. The coupled Lorenz

system is more complex than the Lorenz equation and

Chen equation; the computation (wall-clock) time is 10

times longer, and we only list the first 100 TU reliable

solutions in Table S4 (online).

3.4 Lü system

Lü and Chen [29] discovered a chaotic system whose

properties are between those of the Lorenz system and

Chen system. This Lü equation is an important link

between these two types of system in canonical Lorenz

equation theory. The equations of the Lü system are

dx

dt
¼ �axþ ay;

dy

dt
¼ cy� xz;

dz

dt
¼ xy� bz;

8
>>>>>>><

>>>>>>>:

ð7Þ

where a = 36, b = 3, c = 20, and the initial values are

(x0, y0, z0) = (-3, 2, 20).

The Taylor coefficient recurrence formulas for Eq. (7)

are

a0 ¼ xn;

b0 ¼ yn;

c0 ¼ zn;

8
>><

>>:

akþ1 ¼
1

k þ 1
�aak þ abkð Þ;

bkþ1 ¼
1

k þ 1
cbk �

Xk

i¼0

ak�ici

 !

;

ckþ1 ¼
1

k þ 1

Xk

i¼0

ak�ibi � bck

 !

:

8
>>>>>>>>>><

>>>>>>>>>>:

Figures 5a and b indicate that if we want to obtain a

reliable solution of the Lü system to 1000 TU, a 600-order

Taylor method and 2000-bits precision are necessary.

Table S5 (online) in the appendix lists the reliable

reference solutions of the Lü equation.

(a) (b)

Fig. 2 The same as Fig. 1, but for the Rossler equation. (a) Tc �M diagram with K = 666; the line is Tc ¼ 65M � 60. (b) Tc � K diagram with

M = 32; the line is Tc ¼ 9:1K � 60
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4 Discussion and conclusion

An improved parallel multiple-precision Taylor (PMT)

scheme based on Wang et al. [24] has been presented in

this paper. The improved computation of the Taylor coef-

ficients and less memory usage increase the computation

speed, with results indicating the performance of the newer

scheme is about 2–3 times faster than PMT-1.0.

Through applying the PMT scheme, we were able to

complete reliable computation of the Chen equation,

Rossler equation, Lü equation, and the coupled Lorenz

system. Each of these chaotic systems possesses different

properties, and the different maximal Lyapunov exponents

in particular will cause numerical errors to increase at

different speeds. The PMT method obtains each system’s

Tc �M and Tc � K diagrams, and then obtains the reliable

reference solutions for these systems. These reference

solutions can be used to verify the user’s numerical pro-

gram. Moreover, through analysis the reference solutions,

we can obtain the Tc of each chaotic system for single and

double precision.

Table 3 list the effective computation time for the five

chaotic systems. Compared with the Lorenz system, the Tc

of the Chen system is much shorter (mainly caused by the

properties of the chaotic system itself) and the numerical

error accumulation is much faster. On the contrary, the Tc

of the Rossler system is much longer than the Lorenz

system, indicating the error does not increase as quickly,

(a) (b)

Fig. 3 The same as Fig. 1, but for coupled Lorenz systems. (a) Tc �M diagram for slow dynamics with K = 666; the line is Tc ¼ 0:2M þ 5. (b)

Tc � K diagram for slow dynamics with M = 200; the line is Tc ¼ 0:06K þ 3:56

(a) (b)

Fig. 4 The same as Fig. 3, but for fast dynamic systems. (a) Tc �M diagram for fast dynamics with K = 666; the line is Tc ¼ 0:2M. (b) Tc � K

diagram for fast dynamics with M = 200; the line is Tc ¼ 0:06K � 0:3
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and thus we can obtain the solution more easily. The per-

formance of the Lü system is similar to the Chen system.

The coupled Lorenz system has a different Tc for slow

and fast dynamics. It seems that, owing to the coupled

process, the Tc for slow dynamics is much shorter than the

uncoupled Lorenz system, while with fast dynamics the Tc

is even shorter. The Tc values of these coupled systems are

1.05 TU and 2.6 TU, respectively. These small Tc values

mean the general double-precision computer cannot obtain

reliable solution longer than 2.6 TU, and thus analysis of

this system and the conclusions drawn from it in terms of

the predictability problem should pay attention to the

numerical error.

The parallel performance of the improved PMT scheme

has been demonstrated for the Lorenz and Chen systems,

with the time cost and speed-up of many CPUs indicating

the newer PMT scheme performs better than the older one.

This parallel efficiency increase is even larger when com-

putation with larger M and K is carried out. The PMT

scheme is suitable for computation of the chaotic systems

focused upon in the present paper, but the capacity of the

PMT method is not only limited to these chaotic systems.

The PMT scheme is not complex, but can obtain very

precise computational results. Thus, it is a scheme with

encouraging prospects for application.
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