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Abstract An improved parallel multiple-precision Taylor
(PMT) scheme is developed to obtain clean numerical
simulation (CNS) solutions of chaotic ordinary differential
equations (ODEs). The new version program is about 500
times faster than the reported solvers developed in the
MATHEMATICA, and also 2-3 times faster than the older
version (PMT-1.0) of the scheme. This solver has the
ability to yield longer solutions of Lorenz equations [up to
5000 TU (time unit)]. The PMT-1.1 scheme is applied to a
selection of chaotic systems including the Chen, Rossler,
coupled Lorenz and Lii systems. The 7.-M and T.-K dia-
grams for these chaotic systems are presented and used to
analyze the computation parameters for long-term solu-
tions. The reliable computation times of these chaotic
equations are obtained for single- and double-precision
computation.
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1 Introduction

Obtaining the true trajectories of chaotic dynamical sys-
tems by numerical approaches is not an easy task.
Researchers [1-3] have reported that numerical methods
can provide approximate trajectories close to reality by
applying Riemannian manifolds theory [4]. However, a
remaining problem is how well and how long the
numerical trajectory approximates the real one [S]. Many
studies have documented the sensitivities of computation
parameters for numerical solutions of chaotic equations
[6-11], and indicate that, in spite of there being no initial
errors, the computation is still limited by the maximal
effective computation time (7;) due to round-off error. Li
et al. [7] carried out systematic investigations on these
phenomena for nonlinear ordinary differential equations
(ODEs), by employing numerical experiments and ana-
lytical way, and put forward the computational uncer-
tainty principle (CUP). The sensitivity of computed
results for chaotic systems is important. For example,
previous results [6, 9, 10] have indicated that the maximal
effective computation time is approximately 35 LTU
(Lorenz time unit) for Lorenz equations under double
precision. Nevertheless, studies are still needed to carry
out theoretical analyses of data for computation times of
longer than 35 LTU. It is important to design a difference
solver to provide the correct solution for times beyond 35
LTU, which is the situation for many types of chaotic
system [12].

The existence of T, indicates that if we need the solution
of t = 1000, single- and double-precision computers are
insufficient. In order to overcome the shortcomings of
computation precision, a suite of multiple-precision (MP)
software [13, 14] has been developed. This library can
provide user-defined floating-point precision in the
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computation; the similar reliable mathematical libraries are
supported by some software such as MAPLE, MATH-
EMATICA, and MATLAB. Using MP, it is possible to
choose a sufficiently high precision level with a certain step
size h to maintain round-off errors that are negligible
compared with the truncation error. In such cases, the total
computation error is derived mainly from truncation errors.
Wang et al. [15] and Liao [10] have shown these MP
libraries to solve Lorenz equations, demonstrating that high
precision is valuable in terms of obtaining correct numer-
ical solutions.

The effective way to control truncation error is by
applying a higher-order method (e.g., the Taylor method)
to solve ordinary differential equations (ODEs). A benefit
of the Taylor method is that it can easily develop a higher
order by applying Moore’s method [16, 17] to repeatedly
calculate the Taylor coefficients. Barrio [18] studied
general issues when applying the Taylor method to ODEs,
and analyzed the convergence properties of the method.
Liao [10] proposed the “clean numerical simulation”
(CNS) method, in which a 400-order Taylor method with
800 significant digits in MATHEMATICA was used to
obtain reliable results up to 1100 LTU. However,
MATHEMATICA needed around 1 month to finish the
computation. Recently, Liao [19] presented a thorough
study of the transfer of physical uncertainties in chaotic
systems by CNS, and also demonstrated [10, 19, 20] a
way to obtain the relation of 7, and the order (M) of the
Taylor method. Meanwhile, Barrio et al. [21] used the
Taylor method to study Lorenz equations, Kepler systems
and Henon-Heiles systems [22], and their results indi-
cated, for a certain predefined time ¢, the method can
obtain highly precise numerical solutions. Kehlet and
Logg [23] also gained a reliable chaotic solution of
Lorenz equation on the time interval [0, 1000] by
applying the 200-order finite element method with
400-digits precision. Therefore, reliable, convergent cha-
otic results of Lorenz equation can be obtained by two
different types of numerical approaches.

Operationally, obtaining long-term numerical solutions
for chaotic dynamic systems not only depends on the
precision and step size of the difference method, but is
also depend on the time cost of the solution process.
Wang et al. [24] compared the time cost of a 4-order
Runge—Kutta (RK4) method and Taylor method, and their
analysis clearly indicated higher-order methods can
decrease computation time exponentially, and are thus
more effective. Nevertheless, this higher-order Taylor
method is still time-consuming, and while it works with
very high precision, it is a feature that makes the appli-
cation of this method to chaotic systems less attractive.
Wang et al. [24] proposed the parallel multiple-precision
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(PMT) scheme to reduce the computation time and
managed to achieve an acceptable improvement. More-
over, the final computation result should be reliably val-
idated. In this study, the validation scheme used in Ref.
[24] is applied.

In this study, we propose an improved version of the
PMT scheme and analyze its efficiency, and then apply the
method to some classical chaotic systems. In applying the
PMT method, each system’s maximal effective computa-
tion time (MECT) is investigated for double and single
precision. The reference reliable long-term solutions of the
systems are listed in the electric supplementary material.

2 The improved parallel multiple-precision Taylor
scheme and its performance

Here, we demonstrate the improved PMT scheme by
solving Lorenz’s [25] equation

+

— = —0X g

dr Vs

dy

— =Rx—y—xz, 1
& X —y — XZ (1)
dz

_—— —b

a TR

where R, 0, b (R = 28.0, ¢ = 10.0, b = 8/3) are constants,
and ¢ is a nondimensional time. The truncated Taylor
scheme at p-order (p=M) with step size & is

)4

_ k

Xnp1 = Xq + 3 ogcht,
k=1

P
Yn+1 = Yn + kZ: ﬂkhka (2)
=1
P
Zn+1 = Zn + Z thk»
k=1
and y, = %dkég:”) are k-th
Taylor coefficients. According to Moore [16, 17], Barrio

et al. [18] and Liao [10], the coefficients can be calculated
by a recurrence procedure. The initial coefficients are

— 1d%) — 1d%@)
where o = 5= B = 1 g,

do = X,
ﬁ() = Yn,
Yo = Zn;

then, by applying the relation from Eq. (1), the first steps of
o Pr and 7y, are

oy = —oog + afy,
ﬁl = Royp — ﬁo — %070,
71 = %o — by,

and the (k+1)-th coefficients are
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1 3 Application of the PMT method to solve some
Ml = (=00 + afy), classical chaotic systems
1 k
Biy1 = Tl (Rock — B — ; Otki))i>a (3) 3.1 Chen system
1 k Chen et al. [26] found a chaotic system defined by
Vir1 = r+1 Z(; we—iffi — by |-
= 4= + ay,
The relation in Eq. (3) indicates that each oy, x4 and d
Yk4+1 1s computed from the previous oy, i and y;. Thus, the Y_ (c —a)x + cy — xz, 4)
computation procedure is more like an explicit scheme, and dt
will save much computation time. dz —xy— bz
The parallel scheme of Wang et al. [24] is regarded as dr ’

version 1.0, and in this paper we propose a new coeffi-
cient computation method and parallel scheme as version
1.1. The time cost for this Taylor scheme is depend on
the computation time of oy, f; and y;; when computing
the solution from the n-th step to the (n+1)-th step, the
coefficient oy needs 3p float-point operations (here,
operations including multiplication and division), while f5;

needs 2p —&—’@ operations and 7y, needs Zp—l—”(”TH)
operations, the total of computation times are

7p + p(p + 1). The computation time cost thus following
T, o< p2, and therefore parallel scheme is useful for
improving the performance.

From Eq. (3), we have a time cost of pz, but the com-
putation of f5;, 1, which sums items in Zf-;o o_i)i» can be
separate it to N CPUs for parallel computation. Each CPU
P+l

2N
Zi'(:o ox_iVi» and now the total computation time become
T, o< p*/N. Since the communication speed limited by
hardware, the parallel efficiency is generally under 100 %.
Table 1 summarizes the performance results for PMT-1.1.

Using the improved PMT scheme, it has the ability to
compute the reliable solution for t = 1200 within 0.8 h,
and this speed is 500 times faster than that reported by L09,
and is also 2-3 times faster than version 1.0 of the PMT
scheme. Moreover, this new parallel scheme uses less
computer memory, and thus we can carry out more com-
plex computations than with the old version. The reliable
solutions up to + = 5000 are listed in Table S1 (online).

will carry out operations when summing the items in

Table 1 Performance of PMT-1.1 for Lorenz equations (+ = 1200,
K = 2666, p = 400)

CPU V1.1 time (h) V1.0 time (h) L09 time(h)
1 9.98 32.91 461

5 223 7.52 -

10 1.33 4.13 -

20 1.13 2.46 -

50 0.83 1.48 -

&) SCIENCE CHINA PRESS

where a = 35, b = 3, ¢ = 28, and the initial values are
(.X(), Yo, ZO) = (_3, 2’ 20)

Applying the PMT scheme to solve this equation, the
Taylor coefficient recurrence formulas are

1
Olgt1 = k<|»—1 (—aka + aﬂk),

0lp = Xn, | k

_ Bisi =7—+ <(c—a)ock+6ﬁk—zockiv~),
Bo = Yn, k+1 e A
Yo = Zn;»

1 k
Yi+1 = 1 1 (Zo: o—iff; — b?’k)-

We can obtain the relation of maximal computation time
versus order (7, — M diagram), while keeping the precision
K ascertained value (e.g., K = 666 bits, M = 20-100,
interval 10). In a similar procedure, we can obtain the
relation of maximal computation time versus precisions
(T, — K diagram) with M =32, K = 50-200 and
interval 10.

Figure 1a indicates that if we want to obtain a reliable
solution of the Chen equation to 1000 TU, a 1000-order
Taylor method is necessary. At the same time, Fig. 1b tells
us the computation must have precision of at least 3000
bits. By analyzing the diagrams of 7, — M and 7. — K we
can obtain the necessary computation parameter for chaotic
dynamic systems, and this procedure makes the reliable
computation of chaotic dynamic systems operable. Table
S2 (online) lists the reliable reference solutions of the Chen
equation.

Table 2 lists the wall-clock times of the PMT method
to solve the Chen equation with = 1000 TU using
different parameters. The three cases show that the
parallel method provides valuable speed-up until the
CPU number reaches 50. Moreover, when the compu-
tation workload increases (C>B>A), the speed-up
increases from 12.1 to 30.0. This indicates the more
computation workload there is, the more effective the
parallel scheme.
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(a)
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K

Fig. 1 (a) The T. — M diagram of the Chen equation, with K = 666; the line is 7. = 1.06M. (b) The T, — K diagram of the Chen equation, with
M = 32; the line is 7. = 0.33K — 2.8. The unit of precision K is binary bits

Table 2 Performance of PMT-1.1 for Chen equations

CPU A time (h) B time (h) C time (h)
9.05 88.81 152.85

5 2.19 18.65 32.00

10 1.21 9.81 16.65

20 0.87 5.62 9.25

50 0.75 3.30 5.08

Speedup 12.10 26.90 30.00

The parameters for case A are t = 1000, K = 2666, M = 400; for
case B are t = 1000, K = 3500, M = 1000; and for case C are
t = 1000, K = 4000, M = 1200

3.2 Rossler system

Rossler [27] chaotic systems are described by

E:_y 2,

d

G=rta, 5)
d

d—f:b+z(x7c),

where a = 0.2, b = 0.2, ¢ = 5.7, and the initial values are
(XO’ Yo, ZO) = (09 _678’ 002)
The Taylor coefficient recurrence formulas for Eq. (5) are

1
Op41 = K+l (=B — )
oy = X, 1
Bo = Vs Brs1 = [ (o + apy),
Yo = Zn, 1 k
Yit1 = Y <; Le—iV; — C/k)'
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Figures 2a and b indicate that if we want to obtain a
reliable solution to the Rossler equation to 1000 TU, a
17-order Taylor method and 120-bits precision are
necessary. Table S3 (online) lists the reliable reference
solutions of the Rossler equation.

3.3 Coupled Lorenz system

Boffetta et al. [28] proposed a coupled Lorenz system when
studying the predictability of different timescale systems.
The equations are

@ = —ax + ay,
d
d_)t) =rgx —y —xz7 — &XY,
d
f*w bz,
! (6)
T c(—aX + ay),
dy
T c(reX — Y — XZ) + & Xy,
dz
—=c(XY -bZ
dt C( )7

where a = 10, b = %, rs =28, rr =45, ¢ = 10; the cou-
pled coefficients are & = 10‘2, & = 10; and the initial
values are (xg, yo, 20) =1(5 5, 10) and Xy, Yo,
Zy) = (5, 5, 10). The first three and last three equations of Eq.
(6) are called slow and fast dynamic systems, respectively.
Boffetta et al. [28] indicated that if the coupled coefficients are
all 0, the slow and fast dynamic systems’ maximal Lyapunov
exponents are 1] = 0.905 and /lli = 12.17 respectively, and
when coupled together itis 4; = 11.5.

&) SCIENCE CHINA PRESS
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(a)

1200 [
1000
800

2 600
400

200 |

Fig. 2 The same as Fig. 1, but for the Rossler equation. (a) 7, — M diagram with K = 666; the line is 7. = 65M — 60. (b) T, — K diagram with

M = 32; the line is T, = 9.1K — 60

The Taylor coefficients can be computed start with oq =

Xns ﬁ() = Yn» Yo = Zn» O( Xn7 ﬁO
recurrence formulas are

Yy, Vo =Z,, and the

1
L1 = kil (—aoux + apy),

1 k
Brs1 = k1 (”s“k — B — Z “ki%’)
T8 Z g l i

s )
i

asl + apy),

Vi+1 =

<‘:+

k+1

k
c
F—— ( -3 ol
T 2
k
L& Z %_ibi
c
/k+1 k+1 (Z“k iPi b/k)

Figures 4a and b and Fig. 3a and b indicate that if we
want obtain a reliable solution of the coupled Lorenz
system to 1000 TU, a 5000-order Taylor method and
17000-bits precision are necessary. The coupled Lorenz
system is more complex than the Lorenz equation and
Chen equation; the computation (wall-clock) time is 10
times longer, and we only list the first 100 TU reliable
solutions in Table S4 (online).

&) SCIENCE CHINA PRESS

3.4 Lii system

Li and Chen [29] discovered a chaotic system whose
properties are between those of the Lorenz system and
Chen system. This Lii equation is an important link
between these two types of system in canonical Lorenz
equation theory. The equations of the Lii system are

dx +

—=—ax—+a

dr Y5

d

G- )
dz

~—xy—>b

a DT

where a = 36, b = 3, ¢ = 20, and the initial values are
()CO, Yo, ZO) = (_33 27 20)'

The Taylor coefficient recurrence formulas for Eq. (7)
are

1
A1 = [ (—aoy + apy),
oy = X,
pomn | Pt = o= 3.
Yo = Zn,

1 k
Ykt1 = k+—1 <; o—iff; — b/k) .

Figures 5a and b indicate that if we want to obtain a
reliable solution of the Lii system to 1000 TU, a 600-order
Taylor method and 2000-bits precision are necessary.
Table S5 (online) in the appendix lists the reliable
reference solutions of the Lii equation.

@ Springer
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0 30 60 90 120 150 180

(b)

0 [
0 100 200 300 400 500 600 700

K

Fig. 3 The same as Fig. 1, but for coupled Lorenz systems. (a) 7, — M diagram for slow dynamics with K = 666; the line is 7. = 0.2M + 5. (b)
T. — K diagram for slow dynamics with M = 200; the line is 7. = 0.06K + 3.56

(a)

35

30 F

15 F

10

O:\\lwwlwwlwwlwwlwwl

0 30 60 9 120 150 180

M

(b)

40
30 |

020 F

0 T D D B T
0 100 200 300 400 500 600 700

K

Fig. 4 The same as Fig. 3, but for fast dynamic systems. (a) 7. — M diagram for fast dynamics with K = 666; the line is 7. = 0.2M. (b) T, — K

diagram for fast dynamics with M = 200; the line is 7. = 0.06K — 0.3

4 Discussion and conclusion

An improved parallel multiple-precision Taylor (PMT)
scheme based on Wang et al. [24] has been presented in
this paper. The improved computation of the Taylor coef-
ficients and less memory usage increase the computation
speed, with results indicating the performance of the newer
scheme is about 2-3 times faster than PMT-1.0.

Through applying the PMT scheme, we were able to
complete reliable computation of the Chen equation,
Rossler equation, Lii equation, and the coupled Lorenz
system. Each of these chaotic systems possesses different
properties, and the different maximal Lyapunov exponents
in particular will cause numerical errors to increase at
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different speeds. The PMT method obtains each system’s
T. — M and T, — K diagrams, and then obtains the reliable
reference solutions for these systems. These reference
solutions can be used to verify the user’s numerical pro-
gram. Moreover, through analysis the reference solutions,
we can obtain the T, of each chaotic system for single and
double precision.

Table 3 list the effective computation time for the five
chaotic systems. Compared with the Lorenz system, the 7,
of the Chen system is much shorter (mainly caused by the
properties of the chaotic system itself) and the numerical
error accumulation is much faster. On the contrary, the 7,
of the Rossler system is much longer than the Lorenz
system, indicating the error does not increase as quickly,
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Fig. 5 The same as Fig. 1, but for the Lii system. (a) 7. — M diagram for the Lii system with K = 666; the line is 7, = 1.65M. (b) T, — K

diagram for the Lii system with M = 100; the line is 7, = 0.5K

Table 3 The effective computation time for each system

Chaotic system T. (single T. (double
precision) precision)

Lorenz system 16.8 354

Chen system 6.3 14.6

Rossler system 136.6 406.6

Li system 7.1 323

Coupled Lorenz system 53 5.7

(slow dynamics)
Coupled Lorenz system 1.05 2.6

(fast dynamics)

and thus we can obtain the solution more easily. The per-
formance of the Lii system is similar to the Chen system.

The coupled Lorenz system has a different 7, for slow
and fast dynamics. It seems that, owing to the coupled
process, the T, for slow dynamics is much shorter than the
uncoupled Lorenz system, while with fast dynamics the 7,
is even shorter. The 7. values of these coupled systems are
1.05 TU and 2.6 TU, respectively. These small T, values
mean the general double-precision computer cannot obtain
reliable solution longer than 2.6 TU, and thus analysis of
this system and the conclusions drawn from it in terms of
the predictability problem should pay attention to the
numerical error.

The parallel performance of the improved PMT scheme
has been demonstrated for the Lorenz and Chen systems,
with the time cost and speed-up of many CPUs indicating
the newer PMT scheme performs better than the older one.
This parallel efficiency increase is even larger when com-
putation with larger M and K is carried out. The PMT

&) SCIENCE CHINA PRESS

scheme is suitable for computation of the chaotic systems
focused upon in the present paper, but the capacity of the
PMT method is not only limited to these chaotic systems.
The PMT scheme is not complex, but can obtain very
precise computational results. Thus, it is a scheme with
encouraging prospects for application.
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